INTERNATIONAL JOURNAL FOR DEVELOPMENT IN COMPUTER SCIENCE & TECHNOLOGY
VOLUME-1, ISSUE-IV IS NOW AVAILABLE AT: www.ijdcst.com

ISSN-2320-7884 (ONLINE)
ISSN-2321-0257 (PRINT)

A Data Integrity Proofs in Cloud Storage
with High Performance

'K.sai Gowtham , %5.Suresh Babu
'Final M Tech Student, 2psst Professor
L2 Dept of Computer Science and Engineering
L2 g Mittapalli College of Engineering—Tummalapalem,Guntur,Guntur(dt),
Andhra Pradesh, India.

Abstract:

Cloud computing has been envisioned as the de-facto solution to the rising storage costs of IT
Enterprises. With the high costs of data storage devices as well as the rapid rate at which data is being
generated it proves costly for enterprises or individual users to frequently update their hardware. Apart
from reduction in storage costs data outsourcing to the cloud also helps in reducing the maintenance.
Cloud storage moves the user’s data to large data centers, which are remotely located, on which user
does not have any control. However, this unique feature of the cloud poses many new security
challenges which need to be clearly understood and resolved. One of the important concerns that need
to be addressed is to assure the customer of the integrity i.e. correctness of his data in the cloud. As the
data is physically not accessible to the user the cloud should provide a way for the user to check if the
integrity of his data is maintained or is compromised. In this paper we provide a scheme which gives a
proof of data integrity in the cloud which the customer can employ to check the correctness of his data
in the cloud. This proof can be agreed upon by both the cloud and the customer and can be
incorporated in the Service level agreement (SLA). This scheme ensures that the storage at the client
side is minimal which will be beneficial for thin clients. And also we propose the network bandwidth
is also minimized as the size of the proof is comparatively very less (k+1 bit for one proof). It should
be noted that our scheme applies only to static storage of data. It cannot handle to case when the data
need to be dynamically changed. Hence developing on this will be a future challenge. Also the number
of queries that can be asked by the client is fixed apriori. But this number is quite large and can be
sufficient if the period of data storage is short. It will be a challenge to increase the number of queries
using this scheme.

Keywords-SLA, Cloud Computing, IT Enterprises, Static storage.

1. Introduction:

Cloud computing has been envisioned as the
next generation architecture of the IT enterprise
due to its long list of unprecedented advantages
in IT: on demand self-service, ubiquitous
network access, location-independent resource
pooling, rapid resource elasticity, usage-based
pricing, and transference of risk [1]. One
fundamental aspect of this new computing
model is that data is being Centralized or
outsourced into the cloud. From the data

owners’ perspective, including both individuals
and IT enterprises, storing data remotely in a
cloud in a flexible on-demand manner brings
appealing benefits: relief of the burden of
storage management, universal data access with
independent geographical locations, and
avoidance of capital expenditure on hardware,
software, personnel maintenance, and so on [2].
While cloud computing makes these advantages
more appealing than ever, it also brings new and

21 | upcsT

INTERNATIONAL JOURNAL FOR DEVELOPMENT IN COMPUTER SCIENCE & TECHNOLOGY

VOLUME-1, ISSUE-IV IS NOW AVAILABLE AT: www.ijdcst.com

challenging security threats to the outsourced
data. Since cloud service providers (CSP) are
separate administrative entities, data
outsourcing actually relinquishes the owner’s
ultimate control over the fate of their data. As a
result, the correctness of the data in the cloud is
put at risk due to the following reasons. First of
all, although the infrastructures under the cloud
are much more powerful and reliable than
personal computing devices, they still face a
broad range of both internal and external threats
to data integrity. Outages and security breaches
of noteworthy cloud services appear from time
to time. Amazon S3’s recent downtime [3],
Gmail’s mass email deletion incident [4], and
Apple Mobile Me’s post-launch down time [1
Jare all suc h examples. Second, for
benefits of their own, there are various
motivations for CSPs to behave unfaithfully
toward cloud customers regarding the status of
their outsourced data. Examples include CSPs,
for monetary reasons, reclaiming storage by
discarding data that has not been or is rarely
accessed [2], or even hiding data loss incidents
to maintain a reputation [4]. In short, although
outsourcing data into the cloud is economically
attractive for the cost and complexity of long-
term large scale data storage .it does not offer
any guarantee on data integrity and
availability . This problem, if not properly
addressed, may impede successful deployment
of the cloud architecture.

As data owners no longer physically possess the
storage of their data, traditional cryptographic
primitives for the purpose of data security
protection cannot be directly adopted [3]. In
particular, simply downloading the data for its
integrity verification is not a practical solution
due to the high cost of input/output (I/O) and
transmission across the network. Besides, it is
often insufficient to detect data corruption only
when accessing the data, as it does not give
correctness assurance for un accessed data and

ISSN-2320-7884 (ONLINE)
ISSN-2321-0257 (PRINT)

might be too late to recover the data loss or
damage. Considering the large size of the
outsourced data and the owner’s constrained
resource capability, the tasks of auditing the
data correctness in a cloud environment can be
formidable and expensive for data owners.

ju’mﬁ—']- ______ Public data auditing — = =
<=—IL|],,.| e ,(Cloud S

Third party \ SEnuRLS
Auditar - -

Able to just use cloud storage as if it is local,
without worrying about the need to verify its
integrity. Hence, to fully ensure data security
and save data owners’ computation resources,
we propose to enable publicly auditable cloud
storage services, where data owners can resort
to an external third party auditor (TPA) to verify
the outsourced data when needed. Third party
auditing provides a transparent yet cost-
effective method for establishing trust between
data owner and cloud server. In fact, based on
the audit result from a TPA, the released audit
report would not only help owners to evaluate
the risk of their subscribed cloud data services,
but also be beneficial for the cloud service
provider to improve their cloud based service
platform . In a word, enabling public risk
auditing protocols will play an important role
for this nascent cloud economy to become fully
established; where data owners will need ways
to assess risk and gain trust in the cloud.

Recently, great interest has been shown in
ensuring remotely stored data integrity under
different system and Security models. Some of
the work has already been promoting the
development of public audit ability for existing
cloud data storage services. However, it is not
feasible yet. On one hand, data owners are
currently not sophisticated enough to demand
risk assessment; on the other hand, current
commercial cloud vendors do not provide such a

22 | upcsT

INTERNATIONAL JOURNAL FOR DEVELOPMENT IN COMPUTER SCIENCE & TECHNOLOGY

VOLUME-1, ISSUE-IV IS NOW AVAILABLE AT: www.ijdcst.com

third party auditing interface to support a public
auditing service. This article is intended as a call
for action, aiming to motivate further research
on dependable cloud storage services and enable
public auditing services to become a reality. We
start by suggesting a set of systematically and
cryptographically desirable properties that
should apply to practical deployment for
securing the cloud storage on behalf of data
owners. We sketch a set of building blocks,
including recently developed cryptographic
primitives (e.g. homomorphism authenticator),
to ensure these strong security properties, which
could form the basis of a publicly auditable
secure cloud data storage system.

2. Existing System

The simplest Proof of derivability (POR)
scheme can be made using a keyed hash
function hk(F). In this scheme the verifier,
before archiving the data file F in the cloud
storage, pre-computes the cryptographic hash of
F using hk(F) and stores this hash as well as the
secret key K. To check if the integrity of the file
F is lost the verifier releases the secret key K to
the cloud archive and asks it to compute and
return the value of hk(F). By storing multiple
hash values for different keys the verifier can
check for the integrity of the file F for multiple
times, each one being an independent proof.
Though this scheme is very simple and easily
implementable the main drawback of this
scheme are the high resource costs it requires
for the implementation. At the verifier side this
involves storing as many keys as the number of
checks it want to perform as well as the hash
value of the data file F with each hash key. Also
computing hash value for even a moderately
large data files can be computationally
burdensome for some -clients(PDAs, mobile
phones, etc). As the archive side, each
invocation of the protocol requires the archive

ISSN-2320-7884 (ONLINE)
ISSN-2321-0257 (PRINT)

to process the entire file F. This can be
computationally burdensome for the archive
even for a lightweight operation like hashing.
Furthermore, it requires that each proof requires
the proverb to read the entire file F - a
significant overhead for an archive whose
intended load is only an occasional read per file,
were every file to be tested frequently [3]. Ari
Juels and Burton S. Kaliski Jr proposed a
scheme called Proof of irretrievability for large
files using”sentinels”[3]. In this scheme, unlike
in the key-hash approach scheme, only a single
key can be used irrespective of the size of the
file or the number of files whose irretrievability
it wants to verify. Also the archive needs to
access only a small portion of the file F unlike
in the key-has scheme which required the
archive to process the entire file F for each
protocol verification. This small portion of the
file F is in fact independent of the length of F.
The schematic view of this approach is shown
in Figurel. In this scheme special blocks (called
sentinels) are hidden among other blocks in the
data file F. In the setup phase, the verifier
randomly embeds these sentinels among the
data blocks. During the verification phase, to
check the integrity of the data file F, the verifier
challenges the proverb (cloud archive) by
specifying the positions of a collection of
sentinels and asking the proverb to return the
associated sentinel values. If the proverb has
modified or deleted a substantial portion of F,
then with high probability it will also have
suppressed a number of sentinels. It is therefore
unlikely to respond correctly to the verifier. To
make the sentinels indistinguishable from the
data Dblocks, the whole modified file 1is
encrypted and stored at the archive. The use of
encryption here renders the sentinels
indistinguishable from other file blocks. This
scheme is best suited for storing encrypted files.
As this scheme involves the encryption of the
file F wusing a secret key it becomes

23 | upcsT

INTERNATIONAL JOURNAL FOR DEVELOPMENT IN COMPUTER SCIENCE & TECHNOLOGY

VOLUME-1, ISSUE-IV IS NOW AVAILABLE AT: www.ijdcst.com

computationally cumbersome especially when
the data to be encrypted is large. Hence, this
scheme proves disadvantages to small users
with limited computational power (PDAs,
mobile phones etc.). There will also be storage
overhead at the server, partly due to the newly
inserted sentinels and partly due to the error
correcting codes that are inserted. Also the
client needs to store all the sentinels with it,
which may be storage overhead to thin clients
(PDAs, low power devices vices etc.).

[Ger'f:rgtor) ISEE PR
Challenge o
£
e Responss r e
3. PROPOSEDWORK

We present a scheme which does not involve
the encryption of the whole data. We encrypt
only few bits of data per data block thus
reducing the computational overhead on the
clients. . A data file F with 6 data blocks The
client storage overhead is also minimized as it
does not store any data with it. Hence our
scheme suits well for thin clients. In our data
integrity protocol the verifier needs to store only
a single cryptographic key - irrespective of the
size of the data file F- and two functions which
generate a random sequence. The verifier does
not store any data with it. The verifier before
storing the file at the archive, preprocesses the
file and appends some meta data to the file and
stores at the archive. At the time of verification
the verifier uses this meta data to verify the
integrity of the data. It is important to note that
our proof of data integrity protocol just checks
the integrity of data i.e. if the data has been
illegally modified or deleted. It does not prevent
the archive from modifying the data. In order to
prevent such modifications or deletions other
schemes like redundant storing etc, can be

ISSN-2320-7884 (ONLINE)
ISSN-2321-0257 (PRINT)

implemented which is not a scope of discussion

in this paper.
Data File F
1 2 3 4 5 6
Data blocks

3.1 POR framework: Key ideas

It is useful to think of a POR in our framework
as a two-phase process:

Phase I: Ensuring an g-adversary

In the first phase of a POR (depicted in Figure
1), the client performs a series of challenge-
response interactions with the server A over file
F~ out (i.e., the encoding of F under the outer
code ECCout), with the aim of detecting the
condition ¢ A > 9. To challenge the server, the
client computes ¢ = challenge (n; x, ®)[x], sends
c to the server, receives a response r, and then
computes verify((c, 1, n); k, ®) to check the
response of the adversary. The client repeats
this process qc times, and rejects if any response
is incorrect. Otherwise the client accepts.
Assuming that challenge selects ¢ €U C, the
probability that an adversary A is accepted but
is not an g-adversary, i.e., Q

A>o,is

<A=(1-9)

Qc . The value A can be made arbitrarily small,
with an appropriately large qc. The JK protocol
checks adversarial responses by precomputing a
challenge set {ci} q i=1 €U C and storing
verifying data—sentinels

or MACs—in the encoded file for download by
the client. The Lilli bridge et al. and NR
constructions check adversarial responses by
verifying MACs on file blocks. Thus, both of
these constructions also select ¢ €U C. The SW
scheme omits Phase I, i.e., implicitly assumes
an ¢-adversary. Remark. In practice, the server

24 | DCST

INTERNATIONAL JOURNAL FOR DEVELOPMENT IN COMPUTER SCIENCE & TECHNOLOGY

VOLUME-1, ISSUE-IV IS NOW AVAILABLE AT: www.ijdcst.com

may initially be honest, but turn bad at some
point and be replaced by an adversary A. To
deal with such a dynamic adversary, the client
may spread out its challenges over time. For
example, the client might initiate a challenge
every day. If Phase I is tuned to achieve a
particular A for qc = 50, then,

the condition ¢ A > o will be detected with
probability at least I—A within the first 50 days
after the server has turned adversarial.

Phase II: Extracting F from an ¢-adversary
Assuming an honest server, a client can simply
download F— and verify its correctness via an
appended MAC or digital signature. If this fails,
the client can download the encoded file F™ 1
and try to correct it using the outer error-
correcting layer. Failing that, given an o-
adversary, it is possible for the client to retrieve
F via extract, executing a series of challenges
and decoding F from the responses. Note that in
this phase, the client may not be able to verify
the correctness of the responses it receives (in
particular, for protocols with a bounded number
of verifications): In this case, it relies on the ¢-
bound on A for successful decoding. In our
general framework, there are two levels of
error-correction: * The outer code: This is a (n,
k, d2)-error-correcting code ECCout applied to
F to compute F~ out, the error-corrected portion
of F output by encode. Usually, for large files, n
< m, and to encode a file of size m we need to
resort to a well-known technique, called
striping: the file is divided into stripes of size k
blocks each and each stripe is encoded under
ECCout. In the rest of the paper, when we
encode the file with the outer code, we
implicitly mean that striping is performed if
necessary. ¢ The inner code: This (w, v, dl)-
error-correcting code ECCin represents a second
layer of error-correction in the challenge
response interface for a POR. The function
respond(s, u) applies ECCin to the set s of
message blocks specified in a challenge; the

ISSN-2320-7884 (ONLINE)
ISSN-2321-0257 (PRINT)

value u € W specifies which symbol of the
corresponding codeword should be returned to
the client. In this view, the adversary is a noisy
channel with error probability at most 9. We
may think of the adversary as intercepting
transmissions from a (correct) oracle for
respond to the client. When the client submits
the i-th challenge ¢ = (s, u), the respond oracle
computes the correct response r. If ¢ I s,u =1,
then A corrupts the response in the channel;
otherwise, the adversary leaves r unchanged.

chalengzs

{5 d an
A

F Culer wed E '=spar-:|' (S e {-adversury?
Lileriede Tout ! | B paegqneee] S
T emukr maglsy | nosy ey » s
(E0C,) et cnle channe.
eraoder
oy |
server | adversary

The goal of employing two levels of error
correction in the design of our POR framework
is to correct the adversarial error 9. The effect of
the inner code is to drive down the adversarial
error 9 to some error value ¢’ < 9. The outer
code then corrects this residual error ¢’ . Thus,
the stronger the inner code, the weaker the outer
code we need to employ. The outer code needs
to be an adversarial

Error-correcting code (defined in the full
version of the paper [4]). Intuitively, an
adversarial code transforms an o'
computationally bounded adversary to a random
one, i.e., one in which the adversary has no
better chance of corrupting codeword symbols
than choosing at random.

Our PORs are designed to be effective against a
maximum adversarial error ¢. In the next
section, we will show examples of protocols
that tolerate o values non-negligibly close to 1,
as well as protocols that require an upper bound
on ¢ less than 1 2 . There are two main types of
POR protocols that we can construct in our
framework:

25 | uDCST

INTERNATIONAL JOURNAL FOR DEVELOPMENT IN COMPUTER SCIENCE & TECHNOLOGY ISSN-2320-7884 (ONLINE)
VOLUME-1, ISSUE-IV IS NOW AVAILABLE AT: www.ijdcst.com ISSN-2321-0257 (PRINT)

1. In protocols that enable an unbounded

number of server verifications (e.g., SW), the T
responses to challenges in Phase II can be '
verified. In this case, the inner code can simply

be an erasure code and can therefore tolerate 4 -
error rates ¢ no negligibly close to 1. We Fjee v
describe in Section 4 a generalization of SW B o -
that fits into our framework. Even if, :

theoretically, such protocols do not need to : -

employ Phase I to limit ¢ (since they can extract e e serrs

for ¢ close to 1), in practical settings obtaining a e s R

Phase-I bound on the adversarial corruption rate
is still valuable to ensure efficient extraction.

2. In protocols in which a limited number of
responses can be verified, we need to employ an
error-correcting inner code in order to correct
arbitrary server responses. In such protocols, we
need to set an upper bound on the adversarial
rate less than 1 2 and dependent on both the 3
inner and outer code parameters. For such N

protocols to fit our framework, we need to .
assume that the adversary’s corruption rate Keysize (Number of group elements)

during extraction is also limited by the same ¢ <
1 2. Under this assumption, either the adversary
corruption rate is greater than ¢, and will be 1o

detected with high probability in Phase I, or ¢ is "

low enough so that we can extract F ~+-16M
successfully in Phase II. We present a more i
efficient version of JK t hat employs a limited N g
number of verifications assuming an upper O N
bound on ¢ given by the error correction rate of N 1. S L

the inner code. Despite such restrictions, we A T
show its practical advantages in storage 7 skebisrberch o ametciossdaiablo]
overhead and proof costs compared to SW for
values of o within the error-correction
capabilities of the inner and outer codes. Now _ g
the full storage and successful extraction = T e oo -+ BlockSize=40
process for the client is as follows. We let the SRR e iy
superscript denote a corrupted file -+-Blocksize=320
4. EXPERIMENTAL RESULTS B s, SR

munfcation Bits par

Time(Sec)

71V

Time{sec)

Time [Sec|

e L L e e iyl

Y
"

Number of blocks accessed In a verlficaton

26 | IDCST

INTERNATIONAL JOURNAL FOR DEVELOPMENT IN COMPUTER SCIENCE & TECHNOLOGY

VOLUME-1, ISSUE-IV IS NOW AVAILABLE AT: www.ijdcst.com

-+-BlockSize=40
-m-Blockbize=80
-4 -BlockSize=160
-~-BlockSize=320
- +-BlockSize=640
»-RlorkSire-960

Time [Sec|

e et]

Number of blocks accessed in a verification

5. CONCLUSIONS AND FUTURE WORK

In this paper we have worked to facilitate the
client in getting a proof of integrity of the data
which he wishes to store in the cloud storage
servers with bare minimum Costs and efforts.
Our scheme was developed to reduce the
computational and storage overhead of the
client as well as to minimize the computational
overhead of the cloud storage server. We also
minimized the size of the proof of data integrity
so as to reduce the network bandwidth
consumption. At the client we only store two
functions, the bit generator function g, and the
function h which is used for encrypting the data.
Hence the storage at the client is very much
minimal compared to all other schemes [4] that
were developed. Hence this scheme proves
advantageous to thin clients like PDAs and
mobile phones. The operation of encryption of
data generally consumes a large computational
power. In our scheme the encrypting process is
very much limited to only a fraction of the

ISSN-2320-7884 (ONLINE)
ISSN-2321-0257 (PRINT)

whole data thereby saving on the computational
time of the client. Many of the schemes
proposed earlier require the archive to perform
tasks that need a lot of computational power to
generate the proof of data integrity [3]. But in
our scheme the archive just need to fetch and
send few bits of data to the client. And also
evaluate the performance of the cloud storage
performance.

REFERENCES

[1] E. Mykletun, M. Narasimha, and G. Tsudik,
“Authentication and integrity in outsourced
databases,” Trans. Storage, vol. 2, no. 2, pp.
107-138, 2006.

[2] D. X. Song, D. Wagner, and A. Perrig,
“Practical techniques for searches on encrypted
data,” in SP *00: Proceedings of the 2000 IEEE
Symposium on Security and Privacy.
Washington, DC, USA: IEEE Computer
Society, 2000, p. 44.

[3] A. Juels and B. S. Kaliski, Jr., “Pors: proofs
of retrievability for large files,” in CCS ’07:
Proceedings of the 14th ACM conference on
Computer and communications security. New
York, NY, USA: ACM, 2007, pp. 584-597.

[4] G. Ateniese, R. Burns, R. Curtmola, J.
Herring, L. Kissner, Z. Peterson, and D. Song,
“Provable data possession at untrusted stores,”
in CCS ’07: Proceedings of the 14th ACM
conference on Computer and communications
security. New York, NY, USA: ACM, 2007, pp.
598-6009.

27 | upcsT

INTERNATIONAL JOURNAL FOR DEVELOPMENT IN COMPUTER SCIENCE & TECHNOLOGY

VOLUME-1, ISSUE-IV IS NOW AVAILABLE AT: www.ijdcst.com

Katuri Sai Gowtham
received his B.Tech Degree
In CSE From Sri Mittapalli
College Of Engineering
Tummalapalem Guntur
(Dt), in 2010, the M.Tech.
Degree in CSE from Sri
Mittapalli College Of
Engineering Tummalapalem, Guntur (Dt), at
present, he is engaged in “A Data Integrity
Proofs In Cloud Storage With High
Performance”.

Suresh Babu
Siriparapu Pursuing
Ph.D (CSE) in the area
of Digital Image
Processing at JNTUK,
Kakinada. M.Tech
(CSE) from J.B.
Institute of Engineering
i and Technology,
L affiliated to JNTU
Hyderabad in the year 2009. B.Tech (CSE)
from Vignan’s Engineering College affiliated to
JNTU Hyderabad in the year 2005. Currently
working as an Assistant Professor in CSE Dept.
at Sri Mittapalli College of Engineering
College, Thummalapalem, NH-5, Guntur(Dt.,)
Worked as an Assistant Professor in CSE
Dept. at Narasaraopeta Engineering College,
Narasaraopet, from 10th June 2009 to 30th
April 2013.

ISSN-2320-7884 (ONLINE)
ISSN-2321-0257 (PRINT)

28 | uDCST

